小升初数学考点归纳:余数、同余与周期
余数、同余与周期
一、同余的定义:
①若两个整数a、b除以的余数相同,则称a、b对于模同余。
②已知三个整数a、b、,如果|a-b,就称a、b对于模同余,记作a≡b(d ),读作a同余于b模。
二、同余的性质:
①自身性:a≡a(d );
②对称性:若a≡b(d ),则b≡a(d );
③传递性:若a≡b(d ),b≡c(d ),则a≡ c(d );
④和差性:若a≡b(d ),c≡d(d ),则a+c≡b+d(d ),a-c≡b-d(d );
⑤相乘性:若a≡ b(d ),c≡d(d ),则a×c≡ b×d(d );
⑥乘方性:若a≡b(d ),则an≡bn(d );
⑦同倍性:若a≡ b(d ),整数c,则a×c≡ b×c(d ×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(d 9)或(d 3);
②一个自然数M,X表示M的各个奇数位上数字的和,表示M的各个偶数数位上数字的和,则M≡-X或M≡11-(X-)(d 11);
五、费尔马小定理:
如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(d p)。